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Abstract
A novel analytical approach has been developed for heat conduction in a
multi-dimensional composite slab subject to time-dependent boundary changes
of the first kind. Boundary temperatures are represented as Fourier series.
Taking advantage of the periodic properties of boundary changes, the analytical
solution is obtained and expressed explicitly. Nearly all the published works
necessitate searching for associated eigenvalues in solving such a problem
even for a one-dimensional composite slab. In this paper, the proposed method
involves no iterative computation such as numerically searching for eigenvalues
and no residue evaluation. The adopted method is simple which represents an
extension of the novel analytical approach derived for the one-dimensional
composite slab. Moreover, the method of ‘separation of variables’ employed
in this paper is new. The mathematical formula for solutions is concise and
straightforward. The physical parameters are clearly shown in the formula.
Further comparison with numerical calculations is presented.

PACS numbers: 02.10.Ud, 02.30.Jr, 05.60.Cd

1. Introduction

Many processes are governed by multi-dimensional heat conduction equations for
composite slabs in many areas of science and engineering ranging from building physics,
thermodynamics, combustion, reacting flow processes, heat transfer, unconfined groundwater
flows, and many others. Solution strategies have generally followed analytical and numerical
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directions. The first approach, though limited in terms of versatility of applications, has
immense value in estimating material properties and validating numerical solutions. Since
analytical heat conduction analysis in multi-dimensions is complex and demanding, practical
guidelines for thermal field calculation are very few. Due to the highly complex nature
of the problem, engineers and researchers often simplify actual complex problems to one-
dimensional cases. Under particular conditions, it is relatively easier to solve one-dimensional
conduction equations analytically. To date, a few reported results of temperature distribution
or heat flux fields in multi-dimensional composite slabs have appeared in the literature. A
number of standard textbooks [1, 2] have been mainly devoted to one-dimensional problems.
Even for the one-dimensional case, the problem for the composite slab is very complicated [3].
In fact, one-dimensionally explicit solutions have been derived for only the three-layer slab
recently [4]. For multi-dimensional problems, recent results were provided by de Monte [5]
for two-dimensional and two-layer slabs. A ‘natural’ analytical approach derived for the one-
dimensional composite slab was extended for the two-dimensional slab [6]. The associated
eigenvalue problem was solved with numerical procedure-Newton iteration.

Classically, transient heat equations for a multi-dimensional single slab were solved with
techniques such as the Green function [1], the orthogonal expansion [3] and Laplace transform
[1]. For the multi-dimensional composite slab, these techniques are also often employed
[7–9]. Associated eigenvalue problems are needed for the solution in the first two methods.
Computations for the multi-dimensional composite slab exhibit a few special features. The
eigenvalues may become imaginary, so the corresponding eigenfunctions will have imaginary
arguments [9]. Moreover, attention must be paid when computing eigenvalues since the
spacing between successive eigenvalues changes between zero and a maximal value [9]. For
example, in the ‘natural’ analytical approach developed by de Monte [5], the associated
eigenvalue problem for two-dimensional composites with two rectangular parallel layers was
spit up into two one-dimensional eigenvalue problems. In the direction of the layers, the
problem was a special case of the Sturm–Liouville problem. However, in the direction
perpendicular to the layers, the problem was characterized by real and imaginary eigenvalues.
Special care was then taken. Numerically, the imaginary eigenvalues can produce instability
[9]. Hence, the associated eigenvalue problem can become too complicated to solve. Even for
a one-dimensional problem, many workers have mentioned the complexity of the associated
eigenvalue problem [10].

The third commonly adopted method is the Laplace transform which often yields residue
computation. For the composite slab, the computation is found by directly and numerically
searching for the roots of a hyperbolic equation, finding the derivatives of the equation, and
evaluating and summing the residues. The calculation procedure is tedious if the slab has more
than two layers [11], as numerical searching roots have to be made with very fine increment
for inverse Laplace transforms to prevent missing roots which can lead to a wrong inverse.

These methods were also reviewed by de Monte [5]. He also pointed out that all the
papers agree that the solution is able to deal only with homogeneous boundary conditions of
the first and second kinds in the direction parallel to the layers, since the linear homogeneous
boundary condition of the third kind unconditionally produces mathematical incompatibilities.
More works are presented by Haji-Shaikh et al [9, 12], which employed the Green’s function
method.

All the above-cited works require solving of eigenvalue problems. Recently, a novel
analytical method was developed to tackle one-dimensional transient heat problems for the
composite slab subject to periodic temperature changes [13]. Taking the advantage of the
periodic properties of boundary changes, the corresponding analytical solution was obtained
and expressed explicitly. Unlike most of the traditional methods, the new method involves no
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Figure 1. Schematic diagram of a two-dimensional composite slab studied in this paper.

residue evaluation and no iterative computation such as a numerical search for eigenvalues.
The adopted method is simple and concise with high accuracy.

In this paper, the developed one-dimensional analytical method is extended to multi-
dimensional geometry for the composite slab. The technique of ‘separation of variables’ is
used. As the boundary conditions are not homogeneous which exhibit a different feature than
a usual way, a new separation technique is proposed.

Compared to the work reviewed above, firstly, boundary conditions or ambient
temperature are given more generally with time dependence. Secondly, there is no need
to numerically search for eigenvalues and to evaluate residues. And the analytical solution
is concise and easy to apply. The physical parameters are clearly shown in the mathematical
formula. Further comparison of the results demonstrates the high accuracy level of the
developed analytical method.

2. Mathematical formulation

2.1. Governing equations

An n-layer composite slab has constant thermal conductivity, diffusivity and density for
each layer whose thermal conductivity, diffusivity and thickness are presented as λj, kj and
lj, j = 1, . . . , n. The basic geometry considered here is a two-dimensional slab in x and
y directions. So the layers have regional lengths in x direction as l1, l2 and ln. Denote
Lj = l1 + · · ·+ lj , j = 1, . . . , n, the layer boundaries are [L0 = 0, L1], [L1, L2] and [Ln−1, Ln].
The schematic figure is shown in figure 1.

The general heat conduction in the slab with first-kind boundary conditions can be
described by the following equations for temperatures Tj (t, x, y):

∂Tj (t, x, y)

∂t
= kj

∂2Tj (t, x, y)

∂x2
+ kj

∂2Tj (t, x, y)

∂y2
,

(2.1)
x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n.

The boundary conditions are

T1(t, L0, y) = T∞(t), y ∈ [0, 1], (2.2a)

Tj (t, Lj , y) = Tj+1(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (2.2b)
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−λj

∂Tj

∂x
(t, Lj , y) = −λj+1

∂Tj+1

∂x
(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (2.2c)

Tn(t, Ln, y) = T ∞(t), y ∈ [0, 1], (2.2d)

Tj (t, x, 0) = T ∞(t), x ∈ [Lj−1, Lj ], j = 1, . . . , n, (2.2e)

Tj (t, x, 1) = T ∞(t), x ∈ [Lj−1, Lj ], j = 1, . . . , n, (2.2 f )

Tj (0, x, y) = 0, x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n. (2.2g)

Without losing generality, it is assumed that H = 1 and boundary temperature is assumed
to be a simple periodic excitation T∞(t) = cos(ωt + ϕ). Cases with more general time-
dependent boundaries are given later. The initial temperature is set to 0 for the sake of
calculation convenience.

Our first step in solving the equations is to reduce the two-dimensional case into several
one-dimensional cases so that the available one-dimensional results can be applied. The
method of ‘separation of variables’ is adopted. Classically, the application of ‘separation of
variables’ requires that the equations be linear and homogeneous. Unfortunately, this is not
true in equations (2.1), (2.2). The difficulty lies in the boundary equations (2.2a), (2.2d)–
(2.2 f ). Therefore, the technique proposed in the following is different from those commonly
reported in textbooks and journals.

In the following, if there is no danger of confusion we shall only write the simple forms
of all the notation. For example Tj, Tj (Ln) instead of Tj (t, x, y) and Tj (t, Ln, y).

2.2. Modification of the problems

First, we proceed the solution by assuming the complex form of the boundary temperature
U∞(t) = exp(iωt + iϕ). The corresponding solution of equations (2.1), (2.2) is denoted as
Uj(t, x, y). Clearly, the real part of the solution is the sought-after solution: Tj (t, x, y) =
Real(Uj (t, x, y)), j = 1, . . . , n.

Equations (2.1), (2.2) are split up into two simpler subproblems such as

Uj(t, x, y) = U 1
j (t, x, y) + U 2

j (t, x, y), (2.3)

where U 1
j (t, x, y) and U 2

j (t, x, y) satisfy the following systems of P1 and P2.

P 1 :
∂U 1

j

∂t
= kj

∂2U 1
j

∂x2
+ kj

∂2U 1
j

∂y2
, x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n

(2.4a)

and boundary conditions are

U 1
1 (t, L0, y) = U∞(t), y ∈ [0, 1], (2.4b)

U 1
j (t, Lj , y) = U 1

j+1(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (2.4c)

−λj

∂U 1
j

∂x
(t, Lj , y) = −λj+1

∂U 1
j+1

∂x
(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (2.4d )

U 1
n (t, Ln, y) = U∞(t), y ∈ [0, 1], (2.4e)

U 1
j (t, x, 0) = 0, x ∈ [Lj−1, Lj ], j = 1, . . . , n, (2.4 f )
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U 1
j (t, x, 1) = 0, x ∈ [Lj−1, Lj ], j = 1, . . . , n. (2.4g)

U 1
j (0, x, y) = 0, x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n. (2.4h)

P 2 :
∂U 2

j

∂t
= kj

∂2U 2
j

∂x2
+ kj

∂2U 2
j

∂y2
, x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n

(2.5a)

and boundary conditions are

U 2
1 (t, L0, y) = 0, y ∈ [0, 1], (2.5b)

U 2
j (t, Lj , y) = U 2

j+1(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (2.5c)

−λj

∂U 2
j

∂x
(t, Lj , y) = −λj+1

∂U 2
j+1

∂x
(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (2.5d )

U 2
n (t, Ln, y) = 0, y ∈ [0, 1], (2.5e)

U 2
j (t, x, 0) = U∞(t), x ∈ [Lj−1, Lj ], j = 1, . . . , n, (2.5 f )

U 2
j (t, x, 1) = U∞(t), x ∈ [Lj−1, Lj ], j = 1, . . . , n, (2.5g)

U 2
j (0, x, y) = 0, x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n. (2.5h)

3. Analytical solutions for P1

3.1. Reduction to one-dimensional subproblems

Denote bm = 2−2 cos(mπ)

mπ
, m = 1, . . . ,∞, then we claim that the problem P1 can be split up

into the following subproblems P1-1 and P1-2.

P 1-1 :
∂Xjm

∂t
− kj

∂2Xjm

∂x2
+ kjm

2π2Xjm = 0, x ∈ [Lj−1, Lj ],
(3.1a)

j = 1, . . . , n, m = 1, . . . ,∞,

with boundaries:

X1m(t, L0) = bmU∞(t), m = 1, . . . ,∞, (3.1b)

Xjm(t, Lj ) = X(j+1)m(t, Lj ), j = 1, . . . , n − 1, m = 1, . . . ,∞, (3.1c)

−λj

∂Xjm

∂x
(t, Lj ) = −λj+1

∂X(j+1)m

∂x
(t, Lj ), j = 1, . . . , n − 1, m = 1, . . . ,∞,

(3.1d )

Xnm(t, Ln) = bmU∞(t), m = 1, . . . ,∞, (3.1e)

Xjm(t, x) = 0, x ∈ [Lj−1, Lj ], j = 1, . . . , n, m = 1, . . . ,∞. (3.1 f )

P 1-2 : Y ′′
m(y) + m2π2Ym(y) = 0, y ∈ [0, 1], m = 1, . . . ,∞, (3.2a)

with boundaries

Ym(0) = 0, Ym(1) = 0, m = 1, . . . ,∞. (3.2b)

The solution of P1 is expressed as

U 1
j (t, x, y) =

∞∑
m=1

Xjm(t, x)Ym(y). (3.3)
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3.2. Verification of the claim

Firstly, for the jth layer, the time and spatial variables are separated by assuming a product
solution of the form

U 1
j (t, x, y) = Xj(t, x)Yj (y). (3.4)

Substituting this assumed form of the solution into the homogeneous equation (2.4a) gives

∂Xj

∂t
− kj

∂2Xj

∂x2

Xj

= kjY
′′
j

Yj

. (3.5)

Setting each side of the above equation equal to −µ2
j gives

Y ′′
j +

µ2
j

kj

Yj = 0. (3.6)

The solution Yj is straightforward and given as

Yj (y) = Aj sin

(
µj√
kj

y

)
+ Bj cos

(
µj√
kj

y

)
. (3.7)

To satisfy the boundary condition (2.4 f ), (2.4g) we get that
µj√
kj

= mπ or µjm = mπ
√

kj and

Yjm(y) = Ajm sin(mπy), m = 1, . . . ,∞. (3.8)

It is easily seen that Yjm(y) is independent of layers, thereby we re-write as

Ym(y) = Am sin(mπy), m = 1, . . . ,∞. (3.9)

Equations (3.6) and (3.9) demonstrate that Ym is the solution to the system P1-2. Therefore,
a more general form of the linear combination of these solutions will satisfy the system P1:

U 1
j (t, x, y) =

∞∑
m=1

Xjm(t, x) sin(mπy). (3.10)

Note the coefficient Am in equation (3.9) is embedded in Xjm(t, x) which will be determined
from the boundary conditions.

Just for the sake of convenience, we shall omit writing m = 1, . . . ,∞ in the following.
Combination of equations (3.5) and (3.8) gives

∂Xjm

∂t
− kj

∂2Xjm

∂x2
+ µ2

jmXjm = ∂Xjm

∂t
− kj

∂2Xjm

∂x2
+ kjm

2π2Xjm = 0,

which is equation (3.1a) in P1-1.
The specification of boundary conditions is not so straightforward as that in problem P1-2.

To evaluate, we observe that the boundary conditions (2.4b) and (2.4e) from P1 in combination
of equation (3.10) determine that

U∞(t) = U 1
1 (t, L0, y) =

∞∑
m=1

X1m(t, L0) sin(mπy), (3.11a)

U∞(t) = U 1
n (t, Ln, y) =

∞∑
m=1

Xnm(t, Ln) sin(mπy). (3.11b)
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Using orthogonal properties of sin(mπy),
∫ 1

0 sin(mπy) sin(kπy) dy = 0, for m �= k, we
get ∫ 1

0
U∞ sin(mπy) dy =

∫ 1

0

∞∑
k=1

X1k(t, L0) sin(kπy) sin(mπy) dy. (3.12)

The left side is bm

2 U∞ and the right side equals X1m(t, L0) = 1
2 . Hence

X1m(t, L0) = bmU∞ and Xnm(t, Ln) = bmU∞, (3.13)

which are the boundary specifications in equations (3.1b) and (3.1e) for P1-1. The linear
property of equation (3.10) ensures that boundary conditions (2.4c), (2.4d) in P1 be satisfied
by assuming the boundaries (3.1c), (3.1d ) in P1-1. So the claim that P1 can be spit up into
P1-1 and P1-2 is verified. We now proceed with the solution for problem P1-1.

3.3. Analytical solution to problem P1-1

A similar type of problem, without convection term, was presented and solved in our
companion paper [13]. It is helpful to review the method in sufficient detail in solving
P1-1 for understanding. To emphasize, let us re-write the problem P1-1 and omit writing
m = 1, . . . ,∞ in the following:

P 1-1 :
∂Xjm

∂t
− kj

∂2Xjm

∂x2
+ kjm

2π2Xjm = 0, x ∈ [Lj−1, Lj ], j = 1, . . . , n,

(3.14a)

with boundaries:

X1m(t, L0) = bmU∞, (3.14b)

Xjm(t, Lj ) = X(j+1)m(t, Lj ), j = 1, . . . , n − 1, (3.14c)

−λj

∂Xjm

∂x
(t, Lj ) = −λj+1

∂X(j+1)m

∂x
(t, Lj ), j = 1, . . . , n − 1, (3.14d )

Xnm(t, Ln) = bmU∞, (3.14e)

Xjm(0, x) = 0, x ∈ [Lj−1, Lj ], j = 1, . . . , n. (3.14 f )

3.3.1. Laplace transformation of the equations. Applying Laplace transformation on (3.14a)
gives

(s + kjm
2π2)Xjm(s, x) = kj

∂2X̄jm

∂x2
(s, x), x ∈ [Lj−1, Lj ], j = 1, . . . , n

(3.15a)

with boundaries

X̄1m(s, L0) = bmŪ∞, (3.15b)

X̄jm(s, Lj ) = X̄(j+1)m(s, Lj ), j = 1, . . . , n − 1, (3.15c)

−λj

∂X̄jm

∂x
(s, Lj ) = −λj+1

∂X̄(j+1)m

∂x
(s, Lj ), j = 1, . . . , n − 1, (3.15d )

X̄nm(s, Ln) = bmŪ∞. (3.15e)
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A bar over a function f (t) designates its Laplace transform on t (e.g. [10]):

f̄ (s) = L(f (t)) =
∫ ∞

0
exp(−sτ )f (τ ) dτ. (3.16a)

The Laplace transform of a convolution is given by

L(f1(t) ∗ f2(t)) = f̄ 1(s)f̄ 2(s) where

f1(t) ∗ f2(t) =
∫ t

0
f1(τ )f2(t − τ) dτ . (3.16b)

The solution of the differential equation (3.15a) is obtained as

X̄jm = Ajm sinh(qjm(x − Lj−1)) + Bjm cosh(qjm(x − Lj−1)),
(3.17)

x ∈ [Lj−1, Lj ], j = 1, . . . , n,

where

qjm =
√

s

kj

+ m2π2.

Denote ξjm = qjmlj , j = 1, . . . , n and hj = λj+1

λj

√
kj

kj+1
, j = 1, . . . , n − 1, coefficients

Ajm and Bjm in equation (3.17) are determined by the boundary conditions (3.15b)–(3.15e) as

B1m = bmŪ∞, (3.18a)

Ajm sinh ξjm + Bjm cosh ξjm − B(j+1)m = 0, j = 1, . . . , n − 1, (3.18b)

Ajm cosh ξjm + Bjm sinh ξjm − hjA(j+1)m = 0, j = 1, . . . , n − 1, (3.18c)

Anm sinh ξnm + Bnm cosh ξnm = bmŪ∞. (3.18d )

The coefficients Ajm and Bjm can be solved from equation (3.18) by Gramer’s rule as follows:
Let �m(s) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0 . . . 0 0 0 0

sinh ξ1m cosh ξ1m 0 −1 0 0 . . . 0 0 0 0

cosh ξ1m sinh ξ1m −h1 0 0 0 . . . 0 0 0 0

0 0 sinh ξ2m cosh ξ2m 0 −1 . . . 0 0 0 0

0 0 cosh ξ2m sinh ξ2m −h2 0 . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . sinh ξ(n−1)m cosh ξ(n−1)m 0 −1

0 0 0 0 0 0 . . . cosh ξ(n−1)m sinh ξ(n−1)m −hn−1 0

0 0 0 0 0 0 . . . 0 0 sinh ξnm cosh ξnm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.19a)

|�————————– Column 2j − 1

Ajm =

∣∣∣∣∣∣∣∣∣

. . . bmŪ∞ . . .

. . . 0 . . .

�m(s) ... �m(s)

. . . 0 . . .

. . . bmŪ∞ . . .

∣∣∣∣∣∣∣∣∣
�m(s)

= [
�1

jm(s) + �2
jm(s)

]
Ū∞, (3.19b)
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|�————————– Column 2j

Bjm =

∣∣∣∣∣∣∣∣∣

. . . bmŪ∞ . . .

. . . 0 . . .

�m(s) . . . �m(s)

. . . 0 . . .

. . . bmŪ∞ . . .

∣∣∣∣∣∣∣∣∣
�m(s)

= [
�3

jm(s) + �4
jm(s)

]
Ū∞, (3.19c)

where

�1
jm(s) = bm

∣∣∣∣∣
�m(s) with

row − 1 column −2j − 1
deleted

∣∣∣∣∣
�m(s)

,

�2
jm(s) = −bm

∣∣∣∣∣
�m(s) with

row − 2n column −2j − 1
deleted

∣∣∣∣∣
�m(s)

,

(3.19d )

�3
jm(s) = −bm

∣∣∣∣∣
�m(s) with

row − 1 column −2j

deleted

∣∣∣∣∣
�m(s)

, �4
jm(s) = bm

∣∣∣∣∣
�m(s) with

row − 2n column −2j

deleted

∣∣∣∣∣
�m(s)

.

(3.19e)

Thereby, equation (3.17) is obtained as

X̄jm = Ajm sinh(qjm(x − Lj−1)) + Bjm cosh(qjm(x − Lj−1))

= (
�1

jm(s) + �2
jm(s)

)
sinh(qjm(x − Lj−1))Ū∞

+
(
�3

jm(s) + �4
jm(s)

)
cosh(qjm(x − Lj−1))Ū∞

= Fjm(s, x)Ū∞, (3.20a)

where

Fjm(s, x) = (
�1

jm(s) + �2
jm(s)

)
sinh(qjm(x − Lj−1)) +

(
�3

jm(s) + �4
jm(s)

)
× cosh(qjm(x − Lj−1)), x ∈ [Lj−1, Lj ], j = 1, . . . , n. (3.20b)

3.3.2. Solutions of the equations. To illustrate the solution method, let fjm(t, x) be the
inverse Laplace transform of Fjm(s, x). Equation (3.20a) is then expressed as (see (3.16b))

Xjm =fjm(t, x) ∗ U∞(t) =
∫ t

0
fjm(τ, x)U∞(t − τ) dτ =

∫ ∞

0
−

∫ ∞

t

fjm(τ, x)U∞(t − τ) dτ.

(3.21)

As fjm(t, x) is a bounded function, the second term of (3.21) will tend to 0 when time is long
enough. Therefore,

Xjm ≈
∫ ∞

0
fjm(τ, x)U∞(t − τ) dτ =

∫ ∞

0
fjm(τ, x) exp(iω(t − τ) + iϕ) dτ

= exp(iωt + iϕ)

∫ ∞

0
exp(−iωτ)fjm(τ, x) dτ = Fjm(iω, x) exp(iωt + iϕ).
——————————–�|

Laplace transform of fjm at iω = Fjm(iω, x), see (3.16a) (3.22)
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Note the inverse Laplace transform fjm(t, x) is acting only as a symbolic function. By taking
an advantage of the mathematical expression of exponential functions, fjm(t, x) is replaced
by its Laplace transform. In this way, complicated residue calculation is avoided.

3.4. Final solution of P1

By equations (3.10) and (3.22), solution to P1 is obtained as

U 1
j (t, x, y) =

∞∑
m=1

Xjm(t, x) sin(mπy) =
∞∑

m=1

Fjm(iω, x) sin(mπy) exp(iωt + iϕ), (3.23)

where Fjm(t, x) is given in equation (3.20b). Next we need to find the solutions for P2.

4. Analytical solutions for P2

4.1. Simplification of the problem P2

We introduce the new variable

uj = U 2
j exp(−iωt − iϕ). (4.1)

Then P2 becomes

P 2 :
∂uj

∂t
+ iωuj = kj

∂2uj

∂x2
+ kj

∂2uj

∂y2
, x ∈ [Lj−1, Lj ],

y ∈ [0, 1], j = 1, . . . , n (4.2a)

and boundary conditions are

u1(t, L0, y) = 0, y ∈ [0, 1], (4.2b)

uj (t, Lj , y) = uj+1(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (4.2c)

−λj

∂uj

∂x
(t, Lj , y) = −λj+1

∂uj+1

∂x
(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (4.2d )

un(t, Ln, y) = 0, y ∈ [0, 1], (4.2e)

uj (t, x, 0) = 1, x ∈ [Lj−1, Lj ], j = 1, . . . , n, (4.2 f )

uj (t, x, 1) = 1, x ∈ [Lj−1, Lj ], j = 1, . . . , n, (4.2g)

uj (0, x, y) = 0, x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n. (4.2h)

System (4.2) can be split up into the following two subproblems:

uj (t, x, y) = u1
j (x, y) + u2

j (t, x, y), j = 1, . . . , n. (4.3)

P 2-1 : kj

∂2u1
j

∂x2
+ kj

∂2u1
j

∂y2
= iωu1

j , x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n

(4.4a)

and boundary conditions are

u1
1(L0, y) = 0, y ∈ [0, 1], (4.4b)

u1
j (Lj , y) = u1

j+1(Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (4.4c)
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−λj

∂u1
j

∂x
(Lj , y) = −λj+1

∂u1
j+1

∂x
(Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (4.4d )

u1
n(Ln, y) = 0, y ∈ [0, 1], (4.4e)

u1
j (x, 0) = 1, x ∈ [Lj−1, Lj ], j = 1, . . . , n, (4.4 f )

u1
j (x, 1) = 1, x ∈ [Lj−1, Lj ], j = 1, . . . , n. (4.4g)

P 2-2 :
∂u2

j

∂t
+ iωu2

j = kj

∂2u2
j

∂x2
+ kj

∂2u2
j

∂x2
,

(4.5a)
x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n,

and boundary conditions are

u2
1(t, L0, y) = 0, y ∈ [0, 1], (4.5b)

u2
j (t, Lj , y) = u2

j+1(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (4.5c)

−λj

∂u2
j

∂x
(t, Lj , y) = −λj+1

∂u2
j+1

∂x
(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (4.5d)

u2
n(t, Ln, y) = 0, y ∈ [0, 1], (4.5e)

u2
j (t, x, 0) = 0, x ∈ [Lj−1, Lj ], j = 1, . . . , n, (4.5 f )

u2
j (t, x, 1) = 0, x ∈ [Lj−1, Lj ], j = 1, . . . , n, (4.5g)

u2
j (0, x, y) = 0, x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n. (4.5h)

It is easily to see that there exists only trivial solution for P2-2, namely:

u2
j = 0, j = 1, . . . , n. (4.6)

Therefore, we concentrate on solving problem P2-1 only.

4.2. Analytical solutions to P2-1

For convenience, we put

vj = u1
j − 1 and cjm = kjm

2π2

kjm2π2 + iω
, j = 1, . . . , n, m = 1, . . . ,∞

(4.7)

and re-write P2-1 as

P 2-1 : kj

∂2vj

∂x2
+ kj

∂2vj

∂y2
= i ω(vj + 1), x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n

(4.8a)

and boundary conditions are

v1(L0, y) = −1, y ∈ [0, 1], (4.8b)

vj (Lj , y) = vj+1(Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (4.8c)
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−λj

∂vj

∂x
(Lj , y) = −λj+1

∂vj+1

∂x
(Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (4.8 d)

vn(Ln, y) = −1, y ∈ [0, 1], (4.8e)

vj (x, 0) = 0, x ∈ [Lj−1, Lj ], j = 1, . . . , n, (4.8 f )

vj (x, 1) = 0, x ∈ [Lj−1, Lj ], j = 1, . . . , n. (4.8g)

The solutions are separated by assuming a product of the form

vj (x, y) = Xj(x)Yj (y). (4.9)

Let Yj be such equation which satisfies the homogeneous equation of (4.8a), then

Y ′′
j

Yj

= −µ2
j , (4.10)

Boundary equations (4.8f ), (4.8g) give

µj = mπ or µjm = µm = mπ and
(4.11)

Yjm(y) = Ym(y) = sin(mπy), m = 1, . . . ,∞.

Hence

vj (x, y) =
∞∑

m=1

Xjm(x)Ym(y). (4.12)

Inserting equation (4.12) into (4.8a) and noting that 1 = ∑
bmYm we get

kj

∞∑
m=1

X′′
jm(x)Ym(y) − kj

∞∑
m=1

m2π2Xjm(x)Ym(y)

= iω
∞∑

m=1

Xjm(x)Ym(y) + iω
∞∑

m=1

bmYm(y). (4.13)

The orthogonal properties of Ym(y) = sin(mπy) ensure that

kjX
′′
jm − kjm

2π2Xjm = iωXjm + iωbm. (4.14)

By setting qjm =
√

iω
kj

+ m2π2, solution of Xjm(x) in equation (4.14) can be expressed as

Xjm = Ajm sinh(qjm(x − Lj−1)) + Bjm cosh(qjm(x − Lj−1)) − (1 − cjm)bm. (4.15)

So the general solution of P2-1 can be expressed as a linear combination of these solutions,
namely

vj (x, y) =
∞∑

m=1

Xjm(x) sin(mπy), j = 1, . . . , n. (4.16)

Boundary conditions (4.8b) and (4.8e) provide that

−1 = v1(L0, y) =
∞∑

m=1

(
A1m sinh(q1mL0) + B1m cosh(q1mL0) − (1 − c1m)bm

)
sin(mπy).

(4.17)

Using the orthogonal property of the function sin(mπy), we get

B1m = −c1mbm. (4.18a)
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Similarly,

Anm sinh(qnmLn) + Bnm cosh(qnmLn) = −cnmbm. (4.18b)

Together with the boundary conditions (4.8c) and (4.8d) we get the following linear system
equations for the coefficients Ajm and Bjm, j = 1, . . . , n,

B1m = −c1mbm, (4.19a)

Ajm sinh ξjm + Bjm cosh ξjm − B(j+1)m = 0, j = 1, . . . , n − 1, (4.19b)

Ajm cosh ξjm + Bjm sinh ξjm − hjA(j+1)m = 0, j = 1, . . . , n − 1, (4.19c)

Anm sinh ξnm + Bnm cosh ξnm = −cnmbm, (4.19d)

where

qjm =
√

iω

kj

+ m2π2, ξjm = qjmlj , j = 1, . . . , n, hj = λj+1

λj

√
kj

kj+1
,

j = 1, . . . , n − 1, m = 1, . . . ,∞. (4.19e)

Symbolically, the calculations follow exactly the same steps as those in section 3.3.1 by
setting s = iω for the jth layer. Therefore, equations (3.19) give

|�————————– Column 2j − 1

Ajm =

∣∣∣∣∣∣∣∣∣

. . . −c1mbm . . .

. . . 0 . . .

. . . ... . . .

. . . 0 . . .

. . . −cnmbm . . .

∣∣∣∣∣∣∣∣∣
�m(iω)

= −c1m�1
jm(iω) − cnm�2

jm(iω), (4.20a)

|�————————– Column 2j

Bjm =

∣∣∣∣∣∣∣∣∣

. . . −c1mbm . . .

. . . 0 . . .

. . . . . . . . .

. . . 0 . . .

. . . −cnmbm . . .

∣∣∣∣∣∣∣∣∣
�m(iω)

= −c1m�3
jm(iω) − cnm�4

jm(iω). (4.20b)

Hence, from equations (4.15), (4.16)

vj (x, y) =
∞∑

m=1

Xjm(x) sin(mπy) =
∞∑

m=1

Gjm(iω, x) sin(mπy), j = 1, . . . , n, (4.21a)

where

Gjm(iω, x) = −[
c1m�1

jm(iω) + cnm�2
jm(iω)

]
sinh(qjm(x − Lj−1))

− [
c1m�3

jm(iω) + cnm�4
jm(iω)

]
cosh(qjm(x − Lj−1)) − (1 − cjm)bm. (4.21b)

Finally, from equations (4.1), (4.3) and (4.7), the solution of P2 can be obtained as

U 2
j = (vj + 1) exp(iωt + iϕ), j = 1, . . . , n. (4.22)
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Table 1. Material properties of the composite slab.

Thermal conductivity Thermal diffusivity Thickness
Material (W m−1 K−1) (m2 s−1) (mm)

1. Wall paper 0.12 1.5 × 10−7 25
2. Mineral wool 0.0337 1.47 × 10−6 200
3. Concrete 0.9 3.75 × 10−7 100
4. Plywood 0.147 1.61 × 10−7 100
5. Gypsum board 0.23 4.11 × 10−7 13

4.3. Final solutions

From equation (2.3) the solutions to heat conduction for a two-dimensional composite slab
are obtained explicitly as (see (2.3), (3.23) and (4.22)).

Tj (t, x, y) = real

{[ ∞∑
m=1

(Fjm(iω, x) + Gjm(iω, x)) sin(mπy) + 1

]
exp(iωt + iϕ)

}
,

j = 1, . . . , n, (4.23)

where Fjm and Gjm are defined in equations (3.20b) and (4.21b).

5. Solutions for more general boundary conditions

For completeness, we demonstrate the solution in the case of more general boundary conditions
without showing all the details. The Fourier series of time-dependent boundaries take the form

T∞(t) = a0 +
∞∑

k=1

ak cos(ωkt + ϕk). (5.1)

The problem can be split up into two subproblems with boundary conditions which are constant
a0 and the periodic change

∑∞
k=1 ak cos(ωkt + ϕk). The solution in the second subproblem

can be obtained in equation (4.23) with boundary
∑∞

k=1 ak exp(iωkt + iϕk).
For the first subproblem with constant boundary condition, if we ignore the transient term

which will eventually die away, the temperature distribution is the solution of the steady-state
situation a0.

6. Calculation example

We focus on the demonstration of the analytical solutions. A selected five-layer slab is
presented here to assess the accuracy of the method by comparisons with numerical solutions.
The slab is an extension of a three-layer wall structure used in our test building whose material
and physical properties are listed in table 1. The foregoing conditions are shown schematically
in figure 2.

The first boundary conditions were taken from measured monthly weather statistics from
1971 to 2000 in Helsinki area [14]. The yearly statistics data were fitted with cosine function
with period 365 days: T∞(t) = 5.6 − 10.7 cos

(
2π
365 (t − 20.0)

)
.

Calculation of transient temperature change was made over the central region of the slab
in figure 2 for materials 2 and 3. Figures 3 and 4 show the comparisons of the transient
temperature variations by using the analytical and numerical methods. The temperatures were
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Figure 2. Schematic diagram of the five-layer composite slab.
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Figure 3. Comparison of analytical and numerical results at the point marked with star in
material 2.

stored in files as hourly values and shown in figures as hourly and daily values. In both
demonstrated points, the maximal discrepancy is about 0.12 ◦C with relative error of 3%. The
initial value was roughly estimated with numerical programme.

The second boundary was taken from measurements and then fitted with cosine functions
with periods 120, 30, 10, 5 and 1 days. The cosine functions were of the following type:

T∞(t) = a0 +
5∑
1

ai cos

(
2πt

ωi

− ϕi

)
, (6.1)

where the fitting parameters are listed in table 2.
The calculated point was marked with a star in material 3. The transient temperature

change is displayed in figure 5. The biggest discrepancy is about 0.28 ◦C with relative error
less than 2% for the analytical and numerical results. As in the previous case, the initial value
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Figure 4. Comparison of analytical and numerical results at the point marked with a star in
material 3.
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Figure 5. Comparison of analytical and numerical results at the point marked with a star in
material 3.

Table 2. Parameters of equation (6.1).

ω1 ω2 ω3 ω4 ω5

120.0 30.0 10.0 5.0 1.0
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

28.566 93 7.790 886 6.483 743 3.647 276 3.295 951
a0 a1 a2 a3 a4 a5

17.298 92 2.3712 −1.774 64 −0.533 07 −0.053 64 −0.121 07

was roughly estimated with the numerical programme. The calculation shows a good accuracy
of the method. The validation of the numerical programme can be found in [15–17]. More
calculations for temperature distributions also demonstrated a good accuracy of the method
without showing any substantial difference.
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7. Discussions

7.1. Calculation steps

Based on the above statements, we summarize the calculation process as follows:

Step 1. Give λj, kj and lj, j = 1, . . . , n for an n-layer composite slab. Outdoor temperature
is approximated as T∞(t) = a0 +

∑N1
i=1 ai cos(ωit + ϕi). For any point (x, y) at the jth layer,

go to step 2.

Step 2. For i = 1 to N1, calculate Ci: from m = 1 to N2 (N2 = 100 for example),

bm = 2 − 2 cos(mπ)

mπ
, qm =

√
iωi

kj

+ m2π2, c1m = k1m
2π2

k1m2π2 + iωi

,

cjm = kjm
2π2

kjm2π2 + iωi

, cnm = knm
2π2

knm2π2 + iωi

,

�m(iωi), �1
m(iωi), �2

m(iωi), �3
m(iωi), �4

m(iωi), Fm (equation (3.20b)), Gm (equation (4.21b)),
then Ci = ∑N2

m=1 (Fm + Gm) sin(mπy). Go to step 3.

Step 3. Compute
∑N1

i=1 aiCi , Ci is obtained from step 2. The final solution is

a0 + real

{(
N1∑
i=1

aiCi + 1

)
exp(ωit + ϕi)

}
.

7.2. Some observations

From the above calculation steps, we make some observations.

• The calculation includes only simple computation of matrix determinant which can be
easily accomplished by commercial mathematical packages such as Maple, Matlab and
Mathematica for example. No numerical work is necessary. For any jth layer, only five
sparse matrices are involved. The calculation load is small and the computing time is
short.

• Compared with numerical methods, the developed method is easier to implement and a
possible instability in numerical methods is avoided. The accuracy is good. Note that
there exists a restriction on time step as a function of mesh size in numerical methods.

• With a periodic excitation of boundary conditions, the temperature variation of any jth
layer slab is expressed as periodic excitation with attenuated amplitudes and shifted phases
which are given in equation (4.23) for example:

Tj (t, x, y) = real

{[ ∞∑
m=1

(Fjm(iω, x) + Gjm(iω, x)) sin(mπy) + 1

]
exp(iωt + iϕ)

}

=
∣∣∣∣∣
[ ∞∑

m=1

(Fjm(iω, x) + Gjm(iω, x)) sin(mπy) + 1

]∣∣∣∣∣ cos(ωt + iϕ + dϕj ).

The time lag is dϕj which can be estimated from F and G.
• Likewise, F and G can be expressed as algebraic functions of any jth layer’s physical

properties kj for instance. Hence the effect on the solution of different physical properties
is clearly shown. Due to the space limit, we are not going to proceed with this analysis.
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8. Conclusions

In this paper, an analytical approach has been presented for multi-dimensional heat conduction
in a composite slab subject to time-dependent temperature changes. The applied technique of
‘separation of variables’ is new. The benefit of the result is its simple and concise mathematical
forms of the solutions which can be used to analyse attenuated amplitudes and shifted phases
in combination with material properties in the heat transfer process. The physical parameters
are clearly shown in the solution formula. Agreement with numerical solutions is good. In a
general conduction or diffusion application context, however, numerical schemes have usually
been necessary. The proposed approach is free of these restrictions.

One conclusion to be drawn is the accuracy of the analytical solutions, as an approximation
formula was used in deriving solutions. Comparing analytical and numerical results shows
that analytical solutions are accurate.

It is known that any periodic and piecewise continuous function can be approximated as its
Fourier expansion. Therefore, the solution obtained in this paper has a very broad application
range.

Acknowledgment

This research was supported by the Academy of Finland.

References

[1] Carslaw H S and Jaeger J C 1959 Conduction of Heat in Solid 2nd edn (Oxford: Oxford University Press)
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